Astrophysics > Solar and Stellar Astrophysics
[Submitted on 4 Sep 2018]
Title:Spatially resolving the thermally inhomogeneous outer atmosphere of the red giant Arcturus in the 2.3 micron CO lines
View PDFAbstract:The outer atmosphere of K giants shows thermally inhomogeneous structures consisting of the hot chromospheric gas and the cool molecular gas. We present spectro-interferometric observations of the multicomponent outer atmosphere of the well-studied K1.5 giant Arcturus (alpha Boo) in the CO first overtone lines near 2.3 micron. We observed Arcturus with the AMBER instrument at the Very Large Telescope Interferometer (VLTI) at 2.28--2.31 micron with a spectral resolution of 12000 and at projected baselines of 7.3, 14.6, and 21.8 m. The high spectral resolution of the VLTI/AMBER instrument allowed us to spatially resolve Arcturus in the individual CO lines. Comparison of the observed interferometric data with the MARCS photospheric model shows that the star appears to be significantly larger than predicted by the model. It indicates the presence of an extended component that is not accounted for by the current photospheric models for this well-studied star. We found out that the observed AMBER data can be explained by a model with two additional CO layers above the photosphere. The inner CO layer is located just above the photosphere, at 1.04 +/- 0.02 stellar radii, with a temperature of 1600 +/- 400 K and a CO column density of 10^{20 +/- 0.3} cm^-2. On the other hand, the outer CO layer is found to be as extended as to 2.6 +/- 0.2 stellar radii with a temperature of 1800 +/- 100 K and a CO column density of 10^{19 +/- 0.15} cm^-2. The properties of the inner CO layer are in broad agreement with those previously inferred from the spatially unresolved spectroscopic analyses. However, our AMBER observations have revealed that the quasi-static cool molecular component extends out to 2--3 stellar radii, within which region the chromospheric wind steeply accelerates.
Current browse context:
astro-ph.SR
Change to browse by:
References & Citations
export BibTeX citation
Loading...
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.